Nonparametric Iterated-Logarithm Extensions of the Sequential Generalized Likelihood Ratio Test
We develop a nonparametric extension of the sequential generalized likelihood ratio (GLR) test and corresponding time-uniform confidence sequences for the mean of a univariate distribution. By utilizing a geometric interpretation of the GLR statistic, we derive a simple analytic upper bound on the probability that it exceeds any prespecified boundary; these are intractable to approximate via simulations due to infinite horizon of the tests and the composite nonparametric nulls under consideration.