An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes
In this paper, we present an efficient strategy to enumerate the number of $k$ -cycles, $g\leq k < 2g$ , in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth $g$ using its polynomial parity-check matrix $H$ . This strategy works for both $(d_{v},d_{c})$ -regular and irregular QC-LDPC codes.